\[J_\nu(x) = \left(\frac{x}{2}\right)^\nu \sum_{j=0}^{\infty} \frac{(-1)^j}{j! \Gamma(1+\nu+j)} \left(\frac{x}{2}\right)^{2j} \]

\[x \rightarrow 0 \quad \frac{1}{\Gamma(1+\nu)} \left(\frac{x}{2}\right)^\nu \]

\[x \gg 1 \quad \sqrt{\frac{2}{\pi x}} \cos \left(x - \frac{\nu}{2} \right) \frac{\pi}{4} \]

\[= \frac{1}{2\pi x} \int_0^{2\pi} d\phi \exp(ix\cos\phi - iv\phi) \quad \text{integer } \nu \]

\[N_\nu(x) = \frac{1}{\sin \nu \pi} (J_{\nu}(x) \cos \nu \pi - J_{-\nu}(x)) \quad \text{a.k.a. } Y_\nu(x) \]

\[x \rightarrow 0 \quad -\frac{\Gamma(\nu)}{\pi} \left(\frac{2}{x}\right)^\nu \quad \text{or} \quad \frac{2}{\pi} \left\{ \ln \left(\frac{x}{2}\right) + \gamma_{\text{Euler}} \right\} \]

\[x \gg 1 \quad \sqrt{\frac{2}{\pi x}} \sin \left(x - \frac{\nu}{2} \right) \frac{\pi}{4} \]

\[\frac{2}{\pi x} = W \{ J_\nu(x), N_\nu(x) \} \]

where

\[\ln \Gamma(1+x) = -\ln(1+x) + (1 - \gamma_{\text{Euler}}) x + \sum_{n=2}^{\infty} (-1)^n [\zeta(n) - 1] x^n / n \]

for \(|x| < 2 \) with \(\gamma_{\text{Euler}} = 0.57721 \ 56649 \ \ldots \). For the modified functions,

\[I_\nu(x) = \left(\frac{x}{2}\right)^\nu \sum_{j=0}^{\infty} \frac{1}{j! \Gamma(1+\nu+j)} \left(\frac{x}{2}\right)^{2j} = i^{-\nu} J_\nu(ix) \]

\[x \rightarrow 0 \quad \frac{1}{\Gamma(1+\nu)} \left(\frac{x}{2}\right)^\nu \]

\[x \gg 1 \quad \sqrt{\frac{1}{2\pi x}} \exp(x) \]

\[K_\nu(x) = \frac{\pi}{2\sin \nu \pi} (I_{-\nu}(x) - I_\nu(x)) \]

\[x \rightarrow 0 \quad \frac{\Gamma(\nu)}{2} \left(\frac{2}{x}\right)^\nu \quad \text{or} \quad -\left\{ \ln \left(\frac{x}{2}\right) + \gamma_{\text{Euler}} \right\} \]

\[x \gg 1 \quad \sqrt{\frac{\pi}{2x}} \exp(-x) \]

\[\frac{1}{x} = W \{ K_\nu(x), I_\nu(x) \} \]
Bessel’s differential equation is

\[x \frac{d}{dx} \left(x \frac{d}{dx} I_\nu \right) = \left(\nu^2 - x^2 \right) I_\nu \]

The modified differential equation is obtained by replacing \(x \rightarrow ix \).

\[x \frac{d}{dx} \left(x \frac{d}{dx} I_\nu \right) = \left(\nu^2 + x^2 \right) I_\nu \]

Alternatively, upon letting \(s = \ln x \)

\[\frac{d^2}{ds^2} I_\nu = \left(\nu^2 + e^{2s} \right) I_\nu \]

The asymptotic behavior of the solution is straightforward for this case, since we can easily discern dominant terms. Clearly, for large \(s \), assuming that \(I \) and its derivatives are also large, we find \(I_\nu \sim e^{s} = e^x \). Writing \(I_\nu = f(s) e^{s} \) then transforms the differential equation into \(f'' - \nu^2 f + e^s (2f' + f) = 0 \), which for large \(s \) gives \(2f' \sim -f \), and hence \(\frac{d}{ds} \ln f \sim -1/2 \). Thus \(f \sim \exp(-s/2) = 1/\sqrt{x} \), and so \(I_\nu \sim e^x/\sqrt{x} \). Now, there is no way to obtain the normalization factor \(1/\sqrt{2\pi} \) just from the asymptotic behavior of the differential equation, since the equation is linear in \(f \). It is necessary to connect the large \(x \) behavior to the small \(x \) behavior, where we have fixed the normalization through that of the above power series. We will be content to check the normalization numerically, for \(I_0 \), as given below.
$J_0(x)$ and $Y_0(x)$ (or $N_0(x)$)

$J_0(x)$ and $\sqrt{\frac{2}{\pi x}} \cos \left(x - \frac{\pi}{2} \right)$
$J_1(x)$ and $Y_1(x)$ (or $N_1(x)$)

$J_1(x)$ and $\sqrt{\frac{2}{\pi x}} \cos \left(x - \frac{\pi}{2} - \frac{\pi}{4} \right)$
$I_0(x)$ and $K_0(x)$

$I_1(x)$ and $K_1(x)$