Baryons and Skyrmions in Orientifold Field Theories

hep-th/0605065

Stefano Bolognesi
Niels Bohr Institute

14 December 2006
Miami
Ordinary QCD is $SU(N)$ Yang-Mills with N_f Dirac quarks in the fundamental representation.
Ordinary QCD is $SU(N)$ Yang-Mills with N_f Dirac quarks in the fundamental representation.

In order to have a large N limit with asymptotic freedom we can choose between N_f Dirac quarks in the two-index symmetric $(S)\ Q_{\alpha\beta}^f$ or anti-symmetric $(A)\ Q_{[\alpha\beta]}^f$.

For 3 colors the two-index antisymmetric is equal to the anti-fundamental $e^{\gamma}_{Q_{\alpha\beta}} = \frac{1}{2} \epsilon^{\gamma\alpha\beta} Q_{[\alpha\beta]}$ (Corrigan-Ramond 79).

Planar Equivalence relates them in the large N limit (Armoni-Shifman-Veneziano 03).
Ordinary QCD is $SU(N)$ Yang-Mills with N_f Dirac quarks in the fundamental representation.

In order to have a large N limit with asymptotic freedom, we can choose between

- N_f Dirac quarks in the two-index symmetric (S) $Q^{\{\alpha\beta\}}$ or
- anti-symmetric (A) $Q^{[\alpha\beta]}$

Planar Equivalence relates them in the large N limit (Armoni-Shifman-Veneziano 03).
QCD with Quarks in Higher Representations

- Ordinary QCD is $SU(N)$ Yang-Mills with N_f Dirac quarks in the fundamental representation.
- In order to have a *large N limit* with *asymptotic freedom* we can choose between:
 - N_f Dirac quarks in the **two-index symmetric** (S) $Q^\{\alpha \beta\}$ or **anti-symmetric** (A) $Q^{[\alpha \beta]}$
 - N_f Majorana quarks in the **adjoint** representation λ^α_β

$\epsilon_{\gamma \alpha \beta} Q^{[\alpha \beta]}$ (Corrigan-Ramond 79)

Planar Equivalence relates them in the large N limit (Armoni-Shifman-Veneziano 03)
Ordinary QCD is $SU(N)$ Yang-Mills with N_f Dirac quarks in the fundamental representation.

In order to have a large N limit with asymptotic freedom we can choose between

- N_f Dirac quarks in the **two-index symmetric** (S) $Q^{\{\alpha\beta\}}$ or **anti-symmetric** (A) $Q^{[\alpha\beta]}$
- N_f Majorana quarks in the **adjoint** representation λ^{α}_{β}

For 3 colors the two-index antisymmetric is equal to the anti-fundamental $\tilde{Q}_{\gamma} = \frac{1}{2} \epsilon_{\gamma\alpha\beta} Q^{[\alpha\beta]}$ (Corrigan-Ramond 79)
Ordinary QCD is $SU(N)$ Yang-Mills with N_f Dirac quarks in the fundamental representation.

In order to have a *large N limit* with *asymptotic freedom* we can choose between:

- N_f Dirac quarks in the **two-index symmetric** (S) $Q^{\{\alpha\beta\}}$ or **anti-symmetric** (A) $Q^{[\alpha\beta]}$.
- N_f Majorana quarks in the **adjoint** representation λ^α_β.

1. For 3 colors the two-index antisymmetric is equal to the anti-fundamental $\tilde{Q}_\gamma = \frac{1}{2} \epsilon_{\gamma\alpha\beta} Q^{[\alpha\beta]}$ (Corrigan-Ramond 79).
2. Planar Equivalence relates them in the large N limit (Armoni-Shifman-Veneziano 03).
The Skyrmion is a soliton of the low-energy effective Lagrangian.
The Skyrmion is a soliton of the low-energy effective Lagrangian.

In ordinary QCD the Skyrmion is the baryon.
The Skyrmion is a soliton of the low-energy effective Lagrangian.

In ordinary QCD the Skyrmion *is* the baryon.

In Orientifold A/S QCD this identification does not work, at least not at the first glance.
The Skyrmion is a soliton of the low-energy effective Lagrangian.

In ordinary QCD the Skyrmion is the baryon.

In Orientifold A/S QCD this identification does not work, at least not at the first glance.

The purpose of the talk is to explain and solve this apparent puzzle.
The spectrum is composed by **MESONS** $\bar{Q}_\alpha Q^\alpha$ and **BARYONS** $\epsilon_{\alpha_1...\alpha_N} Q^{\alpha_1} \ldots Q^{\alpha_N}$.
The spectrum is composed by \textbf{MESONS} $\bar{Q}_\alpha Q^\alpha$ and \textbf{BARYONS} $\varepsilon_{\alpha_1...\alpha_N} Q^{\alpha_1} \ldots Q^{\alpha_N}$

The chiral symmetry is dynamically broken

$$SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_D$$
The spectrum is composed by **mesons** $\bar{Q}_\alpha Q^\alpha$ and **baryons** $\epsilon_{\alpha_1 \ldots \alpha_N} Q^{\alpha_1} \ldots Q^{\alpha_N}$

The chiral symmetry is dynamically broken

$$SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_D$$

The low energy effective Lagrangian is

$$S_{\text{eff}} = \frac{1}{16} F^2_\pi \int d^4x \left\{ \text{Tr} \partial_\mu U \partial_\mu U^{-1} + \text{higher derivatives} \right\}$$

where $U(x) = \exp \left(\frac{i \pi(x)}{F_\pi} \right)$, where $\pi(x)$ is the Nambu-Goldstone boson matrix
The spectrum is composed by mesons $\bar{Q}_\alpha Q^\alpha$ and baryons $\epsilon_{\alpha_1...\alpha_N} Q^{\alpha_1} ... Q^{\alpha_N}$.

The chiral symmetry is dynamically broken

$$SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_D$$

The low energy effective Lagrangian is

$$S_{\text{eff}} = \frac{1}{16} F_\pi^2 \int d^4x \left\{ \text{Tr} \partial_\mu U \partial_\mu U^{-1} + \text{higher derivatives} \right\}$$

where $U(x) = \exp \left(\frac{i \pi(x)}{F_\pi} \right)$, where $\pi(x)$ is the Nambu-Goldstone boson matrix.

The pions coupling constant scales like $F_\pi \sim \frac{1}{\sqrt{N}}$.
The low-energy Lagrangian and the chiral symmetry breaking is the same.
The low-energy Lagrangian and the chiral symmetry breaking is the same.

The only difference is that now $F_\pi \sim \frac{1}{N}$.
Orientifold QCD

- The low-energy Lagrangian and the chiral symmetry breaking is the same.
- The only difference is that now $F_\pi \sim \frac{1}{N}$.

\[
\epsilon_{\alpha_1\alpha_2...\alpha_N} \epsilon_{\beta_1\beta_2...\beta_N} Q^{\alpha_1\beta_1} Q^{\alpha_2\beta_2} \ldots Q^{\alpha_N\beta_N}
\]

- The baryonic sector is instead very different. For example the simplest baryon is
The Skyrmion

- The Skyrmion is a texture of the low-energy effective Lagrangian.
The Skyrmion

- The Skyrmion is a texture of the low-energy effective Lagrangian
- It is stabilized by the homotopy group

\[\pi_3(SU(N_f)) = \mathbb{Z} \]
The Skyrmion

- The Skyrmion is a texture of the low-energy effective Lagrangian
- It is stabilized by the homotopy group

\[\pi_3 \left(SU \left(N_f \right) \right) = \mathbb{Z} \]

- Skyrmion can acquire spin and baryon number from the WZW term

\[\Gamma_{WZW} = -i \frac{n}{240 \pi^2} \int_{\mathcal{M}^5} \epsilon^{\mu \nu \rho \sigma \tau} \text{Tr} \left(\partial_{\mu} U U^{-1} \ldots \partial_{\tau} U U^{-1} \right) \]

where \(n \) is an integer
The Skyrmion

- The Skyrmion is a texture of the low-energy effective Lagrangian
- It is stabilized by the homotopy group

$$\pi_3 \left(SU \left(N_f \right) \right) = \mathbb{Z}$$

- Skyrmion can acquire spin and baryon number from the WZW term

$$\Gamma_{WZW} = -i \frac{n}{240 \pi^2} \int_{\mathcal{M}^5} e^{\mu \nu \rho \sigma \tau} \text{Tr} \left(\partial_\mu U U^{-1} \cdots \partial_\tau U U^{-1} \right)$$

where n is an integer

- The baryon number of the Skyrmion is equal to n; its statistic is equal to $(-1)^n$
The Skyrmion is the Baryon on ordinary QCD

- In ordinary QCD $n = N$ and so the Skyrmion has the same quantum numbers of $\epsilon_{\alpha_1...\alpha_N} Q^{\alpha_1} \ldots Q^{\alpha_N}$
The Skyrmion is the Baryon on ordinary QCD

- In ordinary QCD $n = N$ and so the Skyrmion has the same quantum numbers of $\epsilon_{\alpha_1...\alpha_N} Q^{\alpha_1} \ldots Q^{\alpha_N}$
- The mass of the Skyrmion is $\sim N$ and also the mass of the baryon is $\sim N$ in the large N limit
The Skyrmion is the Baryon on ordinary QCD

- In ordinary QCD $n = N$ and so the Skyrmion has the same quantum numbers of $\epsilon_{\alpha_1 \ldots \alpha_N} Q^{\alpha_1} \ldots Q^{\alpha_N}$
- The mass of the Skyrmion is $\sim N$ and also the mass of the baryon is $\sim N$ in the large N limit
- The baryon is **ANTI-SYMMETRIC** in the gauge wave function

$$\psi_{\text{gauge}} \quad \psi_{\text{spin/flavor}} \quad \psi_{\text{space}}$$

- $-$
- $+$
- $+$
The Skyrmion is the Baryon on ordinary QCD

- In ordinary QCD $n = N$ and so the Skyrmion has the same quantum numbers of $\epsilon_{\alpha_1...\alpha_N} Q^{\alpha_1} \ldots Q^{\alpha_N}$
- The mass of the Skyrmion is $\sim N$ and also the mass of the baryon is $\sim N$ in the large N limit
- The baryon is ANTI-SYMMETRIC in the gauge wave function

\[
\psi_{\text{gauge}} \quad \psi_{\text{spin/flavor}} \quad \psi_{\text{space}}
\]

- In the large N limit it can be approximated by a system of free bosons in a mean field potential $V_{\text{mean}}(r)$ created by the quarks themselves; the ground state is a Bose-Einstein condensate
The 1-body contribution is simply N times the mass of the single quark.
The 1-body contribution is simply N times the mass of the single quark.

The 2-body interaction is of order $\frac{1}{N}$ but an additional combinatorial factor $\binom{N}{2}$ is needed and we obtain a contribution to the energy of order N.
The Skyrmion is not the simplest baryon on orientifold QCD

- In orientifold QCD $n = \frac{N(N+1)}{2}$ and so the Skyrmion does not have the same quantum numbers of $\epsilon_{\alpha_1\alpha_2...\alpha_N} \epsilon_{\beta_1\beta_2...\beta_N} Q^{\alpha_1\beta_1} Q^{\alpha_2\beta_2} ... Q^{\alpha_N\beta_N}$.
The Skyrmion is not the simplest baryon on orientifold QCD

- In orientifold QCD $n = \frac{N(N+1)}{2}$ and so the Skyrmion does not have the same quantum numbers of $\epsilon_{\alpha_1\alpha_2...\alpha_N} \epsilon_{\beta_1\beta_2...\beta_N} Q^{\alpha_1\beta_1} Q^{\alpha_2\beta_2} \ldots Q^{\alpha_N\beta_N}$
- The mass of the Skyrmion is $\propto N^2$
The Skyrmion is not the simplest baryon on orientifold QCD

- In orientifold QCD \(n = \frac{N(N+1)}{2} \) and so the Skyrmion does not have the same quantum numbers of \(\epsilon_{\alpha_1\alpha_2...\alpha_N} \epsilon_{\beta_1\beta_2...\beta_N} Q^{\alpha_1\beta_1} Q^{\alpha_2\beta_2} \ldots Q^{\alpha_N\beta_N} \).
- The mass of the Skyrmion is \(\propto N^2 \).
- The baryon is symmetric in the gauge wave function.

\[\psi_{\text{gauge}} \psi_{\text{spin/flavor}} \psi_{\text{space}} \]

\[+ \quad + \quad - \]
The Skyrmion is not the simplest baryon on orientifold QCD

- In orientifold QCD \(n = \frac{N(N+1)}{2} \) and so the Skyrmion does not have the same quantum numbers of \(\epsilon_{\alpha_1\alpha_2\ldots\alpha_N} \epsilon_{\beta_1\beta_2\ldots\beta_N} \) \(Q^{\alpha_1\beta_1} Q^{\alpha_2\beta_2} \ldots Q^{\alpha_N\beta_N} \)
- The mass of the Skyrmion is \(\propto N^2 \)
- The baryon is symmetric in the gauge wave function

\[
\psi_{\text{gauge}} \quad \psi_{\text{spin/flavor}} \quad \psi_{\text{space}}
\]

- In the large \(N \) limit it can be approximated by a system of free fermion in a mean field potential \(V_{\text{mean}}(r) \) created by the quarks themseves; the ground state is a Fermi degenerate gas
The Skyrmion is not the simplest baryon on orientifold QCD

- In orientifold QCD $n = \frac{N(N\pm 1)}{2}$ and so the Skyrmion does not have the same quantum numbers of $\epsilon_{\alpha_1 \alpha_2 \ldots \alpha_N}\epsilon_{\beta_1 \beta_2 \ldots \beta_N} Q^{\alpha_1 \beta_1} Q^{\alpha_2 \beta_2} \ldots Q^{\alpha_N \beta_N}$
- The mass of the Skyrmion is $\propto N^2$
- The baryon is symmetric in the gauge wave function

$$\psi_{\text{gauge}} \psi_{\text{spin/flavor}} \psi_{\text{space}}$$

- In the large N limit it can be approximated by a system of free fermion in a mean field potential $V_{\text{mean}}(r)$ created by the quarks themseves; the ground state is a Fermi degenerate gas
- The mass of the baryon is for sure not greater than the Fermi zero temperature pressure $\propto N^{4/3}$
Solution of the puzzle

- **The Skymion must be identified with a baryon that contains** \(\frac{N(N\pm1)}{2} \) **quarks**
Solution of the puzzle

- The Skymion must be identified with a baryon that contains $\frac{N(N\pm1)}{2}$ quarks.
- The Skymion is the "preferred" baryonic state since it minimizes the mass per unit of baryon number.
We are looking for a baryon with $\frac{N(N+1)}{2} = 3$ quarks
We are looking for a baryon with $\frac{N(N+1)}{2} = 3$ quarks
We are looking for a baryon with \(\frac{N(N+1)}{2} = 3 \) quarks
We are looking for a baryon with \(\frac{N(N+1)}{2} = 3 \) quarks.
We are looking for a baryon with \(\frac{N(N+1)}{2} = 3 \) quarks.

The baryon is

\[\epsilon_{\alpha_2 \alpha_1} \epsilon_{\beta_2 \alpha_3} \epsilon_{\beta_1 \beta_3} \ Q^{\{\alpha_1 \beta_1\}} Q^{\{\alpha_2 \beta_2\}} Q^{\{\alpha_3 \beta_3\}} \]
Proposition

There is one and only one gauge wave function that is a gauge singlet and completely antisymmetric under exchange of two quarks. This wave function is composed by \(\frac{N(N+1)}{2} \) quarks \(Q^{\{\alpha\beta\}} \) and is the completely antisymmetric subspace of the tensor product of \(\frac{N(N+1)}{2} \) quarks \(Q^{\{\alpha\}} \).

1. \(q^{\alpha_i} \) and \(q^{\beta_i} \) cannot belong to the same saturation line

2. If \(q^{\alpha_i} \) and \(q^{\alpha_j} \) belong to the same saturation line, the two partners \(q^{\beta_i} \) and \(q^{\beta_j} \) cannot belong to the same saturation line.
Another Example
Anti-symmetric representation 3 colors

- We are looking for a baryon with \(\frac{N(N-1)}{2} = 3 \) quarks
We are looking for a baryon with \(\frac{N(N-1)}{2} = 3 \) quarks

The antisymmetric representation for \(N = 3 \) is equivalent to the anti-fundamental \(\bar{Q}_\gamma = \frac{1}{2}\epsilon_{\gamma\alpha\beta} Q^{[\alpha\beta]} \) and we know how to write a baryon for the anti-fundamental representation \(\epsilon^{\gamma\rho\tau} \bar{Q}_\gamma \bar{Q}_\rho \bar{Q}_\tau \)
Another Example

Anti-symmetric representation 3 colors

- We are looking for a baryon with \(\frac{N(N-1)}{2} = 3 \) quarks
- The antisymmetric representation for \(N = 3 \) is equivalent to the anti-fundamental \(\tilde{Q}_\gamma = \frac{1}{2} \epsilon_{\gamma\alpha\beta} Q^{[\alpha\beta]} \) and we know how to write a baryon for the anti-fundamental representation \(\epsilon^{\gamma\rho\tau} \tilde{Q}_\gamma \tilde{Q}_\rho \tilde{Q}_\tau \)
- Substituting the relation between \(\tilde{Q}_\gamma \) and \(Q^{[\alpha\beta]} \) we obtain

\[
\frac{1}{2} (\epsilon_{\gamma_1 \delta_1 \alpha} \epsilon_{\gamma_2 \delta_2 \beta} - \epsilon_{\gamma_2 \delta_2 \alpha} \epsilon_{\gamma_1 \delta_1 \beta}) Q^{[\alpha\beta]} Q^{[\gamma_1 \delta_1]} Q^{[\gamma_2 \delta_2]}
\]
Proposition

There is one and only one gauge wave function that is a gauge singlet and completely antisymmetric under exchange of two quarks. This wave function is composed by \(\frac{N(N-1)}{2} \) quarks \(Q^{[\alpha\beta]} \) and is the completely antisymmetric subspace of the tensor product of \(\frac{N(N-1)}{2} \) quarks \(Q^{[\alpha]} \).

1. One saturation line can contain at most one quark of the type \(Q^{[\gamma_i\delta_i]} \).

2. If \(q^{\alpha_i} \) and \(q^{\alpha_j} \) belong to the same saturation line, the two partners \(q^{\beta_i} \) and \(q^{\beta_j} \) cannot belong to the same saturation line.
We propose now a toy model to schematize the fundamental baryon

\[\epsilon_{\alpha_1 \alpha_2 \ldots \alpha_N} \epsilon_{\beta_1 \beta_2 \ldots \beta_N} Q^{\alpha_1 \beta_1} Q^{\alpha_2 \beta_2} \ldots Q^{\alpha_N \beta_N} \]
A Toy model for the baryon

- We propose now a toy model to schematize the fundamental baryon
 \[\epsilon_{\alpha_1 \alpha_2 \ldots \alpha_N} \epsilon_{\beta_1 \beta_2 \ldots \beta_N} Q^{\alpha_1 \beta_1} Q^{\alpha_2 \beta_2} \ldots Q^{\alpha_N \beta_N} \]

- We have \(N \) quarks and 2 baryon vertices. Every quark is attached to two fundamental strings and every baryon vertex to \(N \) fundamental strings.
A Toy model for the baryon

- We propose now a toy model to schematize the fundamental baryon
 \[\epsilon_{\alpha_1 \alpha_2 \ldots \alpha_N} \epsilon_{\beta_1 \beta_2 \ldots \beta_N} Q^{\alpha_1 \beta_1} Q^{\alpha_2 \beta_2} \ldots Q^{\alpha_N \beta_N} \]

- We have \(N \) quarks and 2 baryon vertices. Every quark is attached to two fundamental strings and every baryon vertex to \(N \) fundamental strings.

- So the mean potential is
 \[V_{\text{mean}}(R) = 2T_{\text{string}} |R| \]
Mass versus N dependence
Simplest baryon

- We have to fill the energy levels up to the Fermi surface

\[Z R_F Z P_F d^3 R d^3 P (2\pi)^3 (P + V_{\text{mean}}(R)) = E \]

Stefano Bolognesi (Niels Bohr Institute)
We have to fill the energy levels up to the Fermi surface.

We indicate as R_F and P_F respectively the Fermi radius and momentum. The total energy and the number of quarks N are given by

$$\int_{R_F}^{P_F} \int_{R}^{P} \frac{d^3 R d^3 P}{(2\pi)^3} (P + V_{\text{mean}}(R)) = E$$

$$\int_{R_F}^{P_F} \int_{R}^{P} \frac{d^3 R d^3 P}{(2\pi)^3} = N$$
The second equation gives a relation between the Fermi momentum and the Fermi radius, namely $P_F \sim N^{1/3}/R_F$.
The second equation gives a relation between the Fermi momentum and the Fermi radius, namely $P_F \sim N^{1/3}/R_F$.

The first equation gives the following expression of the energy as a function of the radius

$$E \sim \frac{N^{4/3}}{R_F} + T_{\text{string}} NR_F$$
The second equation gives a relation between the Fermi momentum and the Fermi radius, namely \(P_F \sim N^{1/3} / R_F \).

The first equation gives the following expression of the energy as function of the radius

\[
E \sim \frac{N^{4/3}}{R_F} + T_{\text{string}} NR_F
\]

Minimizing we obtain

\[
M_{N-Baryon} \sim N^{7/6} \sqrt{T_{\text{string}}}
\]
The second equation gives a relation between the Fermi momentum and the Fermi radius, namely $P_F \sim N^{1/3}/R_F$.

The first equation gives the following expression of the energy as function of the radius

$$E \sim \frac{N^{4/3}}{R_F} + T_{\text{string}}NR_F$$

Minimizing we obtain

$$M_{N-\text{Baryon}} \sim N^{7/6} \sqrt{T_{\text{string}}}$$

The mass per unit of baryon number grows as $N^{1/6}$!
At zero order the mass is $\propto N^2$

At first order we are tempted to say $g^2 \left(\frac{N^2}{2} \right) \propto N^3$

The correct answer is $g^2 \left(\frac{N^2}{2} \right) \propto N^2$ (Cherman-Cohen 06)

The mass per unit of baryon number is constant!
At zero order the mass is $\propto N^2$
At first order we are tempted to say $g^2 \left(\frac{N^2}{2} \right) \propto N^3$

The correct answer is $g^2 N \left(\frac{N}{2} \right) \propto N^2$ (Cherman-Cohen 06)
At zero order the mass is $\propto N^2$

At first order we are tempted to say $g^2 \binom{N^2}{2} \propto N^3$

The correct answer is $g^2 N \binom{N}{2} \propto N^2$ (Cherman-Cohen 06)
At zero order the mass is \(\propto N^2 \).

At first order we are tempted to say \(g^2 \binom{N^2}{2} \propto N^3 \).

The correct answer is \(g^2 N \binom{N^2}{2} \propto N^2 \) (Cherman-Cohen 06).

The mass per unit of baryon number is constant!
At zero order the mass is $\propto N^2$
At first order we are tempted to say $g^2 \binom{N^2}{2} \propto N^3$
The correct answer is $g^2 N \binom{N}{2} \propto N^2$ (Cherman-Cohen 06)
At zero order the mass is $\propto N^2$
At first order we are tempted to say $g^2 \left(\frac{N^2}{2} \right) \propto N^3$
The correct answer is $g^2 N \left(\frac{N}{2} \right) \propto N^2$ (Cherman-Cohen 06)

THE MASS PER UNIT OF BARYON NUMBER IS CONSTANT!
We have studied the baryon sector of orientifold QCD and showed that the identification still works, even if in a more subtle way.
We have studied the baryon sector of orientifold QCD and showed that the

$$\text{Baryon} = \text{Skyrmion}$$

identification still works, even if in a more subtle way.

- The orientifold large N limit is a promising tool to study real 3-colors QCD.
Conclusion

- We have studied the baryon sector of orientifold QCD and showed that the
 \[\text{Baryon} = \text{Skyrmion} \]
 identification still works, even if in a more subtle way
- The orientifold large N limit is a promising tool to study real 3-colors QCD
- Beyond SM physics
Future works...

- Type 0A/B String theory realization
Future works...

1. Type 0A/B String theory realization
2. Skyrmion in adjoint QCD